

Experiment: Running Apache OpenWhisk for Heavy Workloads on Public Clouds

[image: Apache OpenWhisk]
Lightweight dynamic applications on cloud computing have been migrated to
serverless computing platforms, such as Apache OpenWhisk, recently due to its
elasticity and simplicity of compute resource provisioning. Mobile
applications, image data processing and system log analysis are implemented as
a stateless function to process given tasks on serverless computing
environments. For example, less than 300 lines of a Python function with
TensorFlow library identifies a thousand of training image data from ImageNet
Large Visual Recognition Challenge in 2012 within a few seconds using
serverless concurrent function invocations. Functions for heavy workloads with
external libraries, however, would not be loaded on the serverless environments
due to its size and its long execution time. Applications for big data, deep
learning, computer vision and genomics typically require multiple and
complicated libraries along with cpu and data intensive tasks.

We have three objectives to achieve during this experiment:

	Sucessful deployment of Apache OpenWhisk on public clouds to comare its
behavior with a series of functions for big data, deep learning and genomics
applications

	Benchmark regarding to concurrent function invocations on IaaS-powered
serverless computing environments

	Practical guide to building services on public clouds with the experience of
deploying Apache OpenWhisk.

Target cloud providers are:

	Oracle Cloud Infrastructure

	Amazon EC2

Target serverless platform is:

	Apache OpenWhisk

[image: oracle cloud infrastructure]
[image: Amazon EC2]

	Development Schedule

	OpenWhisk Deployment

	Benchmark

	Practical Guide

	Summary

Development Schedule

This page shows a list of items to achieve during this experiment with the
tentative date. Changes may occur based on discussions.

	Schedule: 04/02/2018 - 05/04/2018 (1 month)

Installation & Configuration

Multi-node installation is desired with DevOps tools to demonstrate a
repeatable cluster setup at any platform.

Two versions of OpenWhisk installation:

	
	standalone deployment, Apr 9th, 2018

	
	Automation with Terraform (https://github.com/oracle/terraform-provider-oci)

	Configuration by Ansible

	
	Cluster setup with 3+ nodes, Apr 13th

	
	by kubernetes pods (https://github.com/apache/incubator-openwhisk-deploy-kube)

Applications

Three applications from different domains would be integrated to depict
use cases.

	Big Data Benchmark from UC Berkely AMPLab, Apr 13th

	Tensorflow ImageNet, MNIST, Apr 20th

	Genomics tool, Rail-RNA sequencing alignment, Apr 20th

Platform

Various server types will be tested between the selected platforms.
The current setups are:

	AWS EC2 i3 vs OCI with object storage, Apr 20th

Practical Guide

The purpose of this section is to share lessons that we learned during this
experiment regarding to software development on public clouds. Comparisons to
development environments would be provided as well. For example, we demonstrate
the differences of between using AWS botocore API and Oracle oci SDK regarding
to virtual machine management e.g. start, stop, or terminate.

	API Usage Guide

	CLI Usage Guide

	Community Support

	Documentation, Apr 27th (above all)

Final Report

This experiment will generate a final report which includes information that we
have collected and tested such as system configuration, devops scripts,
experiment results and summary of what we found during this activity, focusing
on software development and experiences.

	due on May 4th

OpenWhisk Deployment

We anticipate to build a serverless computing environment using open source
projects e.g. Apache OpenWhisk and Fn projects on public clouds. During this
activity, we will learn how to build platform using public cloud services and
understanding differences regarding to hardware performance, and level of
supported development tools i.e. APIs and CLIs.

Target cloud providers to test are:

	Amazon EC2

	Oracle Cloud Infrastructure

Deployment Option

	single node

	cluster mode (3+ nodes)

	high-end performance server types regarding to CPU, Network and Memory

Integration

	block storage

	object storage

	10G network

	SSD vs HDD local disk

Fn Project (Optional)

TBD

Kubeless (Optional)

TBD

Benchmark

This section shows benchmark results among different cloud platforms.

The current platforms included are:

	Amazon EC2

	Oracle Cloud Infrastructure

Concurrent invocations

A thousand of small tasks are given on serverless computing environments to
complete in parallel. CPU-intensive, a file I/O-intensive and heavy network
traffic functions are designed to measure concurrent throughput on these cloud
platforms.

CPU Intensive Function

Javascript function for Matrix multiplication and binary tree creation is
implemented to stress CPU time.

Network Intensive Function

Downloading a large file from its object storage creates network traffic and
network bandwidth for downloading will be displayed for concurrent executions.

File I/O Intensive Function

Intermittent files are frequently generated while a set of functions runs and
writing and reading file speed is a measure to avoid overhead of processing
logics in functions.

Practical Guide

Poor management of cloud resources may cause unnecessary resource provisioning,
misconfigured infrastructure and delays in troubleshooting of cloud components.
Nowdays, however, cloud providers distribute several software development tools
and APIs to enable proper handling of cloud resources by managing them
automatic and programmable.

This section explains technical details of managing cloud resources using
Python and REST APIs by walk-through of the serverless deployment experience.
General comparisons will be provided at the end to give some idea of deploying
applications on these cloud providers as a beginner. The differences and
similarities are also demonstrated.

Account Authentication

Oracle User Credentials:

	IAM

	console password

	api signing key

	Swift password

	Amazon S3 Compatibility API Keys

	SMTP Credentials

AWS EC2 User Credentials:

	IAM

	Multi-Factor Authentication (MFA) for AWS websites

	Access Keys (id and secret key pairs)

	CloudFront key Pairs

	X.509 certificate

System Choice

Operating Systems

	Windows

	Linux distributions

Server Types

	general

	cpu intensive

	io intensive

	bare metal

Account Limit

AWS API Limits

	10k requests/sec

AWS EC2 Limits

	5 public ips/classic ec2 instance

	5k key pairs

Supported Development Tools

Oracle:

	Python SDK: https://github.com/oracle/oci-python-sdk

	CLIs: http://API_URL/tools/Linux/install-IaaS-CLI.sh

AWS:

	Python SDK: https://github.com/boto/boto3

	CLIs: https://github.com/aws/aws-cli

Comparisons

TBD

Summary

TBD

Summary

TBD

Index

Development Tasks

Installation

	check openwhisk version

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/EC2-logo-full.jpg
Amazon EC2

_images/Z9Ik6huVSQC0sSJf8To4.png
ORACLE"

Cloud Infrastructure

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Experiment: Running Apache OpenWhisk for Heavy Workloads on Public Clouds

 		
 Development Schedule

 		
 Installation & Configuration

 		
 Applications

 		
 Platform

 		
 Practical Guide

 		
 Final Report

 		
 OpenWhisk Deployment

 		
 Deployment Option

 		
 Integration

 		
 Fn Project (Optional)

 		
 Kubeless (Optional)

 		
 Benchmark

 		
 Concurrent invocations

 		
 CPU Intensive Function

 		
 Network Intensive Function

 		
 File I/O Intensive Function

 		
 Practical Guide

 		
 Account Authentication

 		
 System Choice

 		
 Account Limit

 		
 Supported Development Tools

 		
 Comparisons

 		
 Summary

 		
 Summary

_static/up.png

_static/up-pressed.png

